Corrigé du DM n°30

Correction 1.

1. M. Brayer répète 14 fois la même épreuve : mettre une note aléatoire à une copie, et le succès est « la copie obtient la note 5 ». Les épreuves sont indépendantes les unes des autres car les notes ne s'influencent pas entre elles, et on considère qu'il y a équiprobabilité, donc la probabilité du succès est $\frac{1}{5}$.

X est la variable aléatoire qui compte le nombre de succès, donc X suit la loi binomiale de paramètres 14 et $\frac{1}{5}$

2. $E(X) = 14 \times \frac{1}{5} = 2,8$ donc en moyenne, chaque semaine, 2,8 élèves auront 5/5 à l'interrogation.

Correction 3.

1. • Montrons que $F \cap G = \{P_0\}$ où P_0 est le polynôme nul.

Soit P dans $F \cap G$.

 $P \in F$ donc il existe deux réels λ et μ tels que $P = \lambda(1+X) + \mu(1+X^2)$.

Et $P \in G$ donc P(-1) = 0 donc $\lambda \times 0 + \mu \times 2 = 0$ donc $\mu = 0$.

Et $P \in G$ donc P(0) = 0 donc $\lambda \times 1 + 0 = 0$ donc $\lambda = 0$.

Donc $P = P_0$.

Donc on a bien $F \cap G = \{P_0\}.$

- Montrons que $\dim(F) + \dim(G) = \mathbb{R}_3[X]$.
 - $\star P_1$ et P_2 sont de degrés échelonnés donc forment une base de F et donc dim(F) = 2.
 - $\star \text{ Soit } P \in \mathbb{R}_3[X], \quad P \in G \iff X(X+1)|P$ $\iff \exists Q \in \mathbb{R}_1[X], P = X(X+1)Q$ $\iff \exists (a,b) \in \mathbb{R}^2, P = X(X+1)(aX+b)$ $\iff \exists (a,b) \in \mathbb{R}^2, P = aX^2(X+1) + bX(X+1)$

Donc $G = \text{Vect}(X^2(X+1), X(X+1))$

Ces deux vecteurs sont de degrés échelonnés, donc ils forment une base de G et $\dim(G) = 2$.

Donc $\dim(F) + \dim(G) = 4 = \dim(\mathbb{R}_3[X])$

Donc
$$\mathbb{R}_3[X] = F \oplus G$$

2. On sait que F et G sont supplémentaires donc il existe des réels λ et μ et un polynôme Q de G tels que $P = \lambda P_1 + \mu P_2 + Q$.

Alors $P(-1) = \lambda P_1(-1) + \mu P_2(-1) + Q(-1) = 2\mu$ donc $\mu = \frac{1}{2}(2 + 2 + 1 - 3) = 1$.

Et de même, $P(0) = \lambda \times 1 + 1 \times 1 + Q(0)$ donc $\lambda = 2 - 1 = 1$.

Alors
$$Q = P - (1 + X) - (1 + X^2) = -3X + 3X^3$$
.

Donc
$$P = (2 + X + X^2) + (-3X + 3X^3)$$
 avec $2 + X + X^2 \in F$ et $-3X + 3X^3 \in G$

Autre méthode : on aurait pu déterminer les coordonnées de P dans la base obtenue par recollement $(P_1, P_2, X^2(X+1), X(X+1))$ et regrouper les deux premières composantes, et les deux dernières.