Nom - Prénom :

Interrogation N°15

1. Définition de arccos :

2. Ensemble de dérivabilité et dérivée de tan :

limites de tan en $\frac{\pi}{2}$ (pas de justification attendue) :

- 3. $\arctan(1) = \dots \operatorname{car}$ $\arcsin\left(\frac{\sqrt{3}}{2}\right) = \dots \operatorname{car}$ $\arccos\left(-\frac{1}{2}\right) = \dots \operatorname{car}$
- **4.** $\sin(x) = a \iff \dots$
- **5.** Méthode pour obtenir une équation cartésienne de la droite \mathcal{D} passant par une point $A(x_A, y_A)$ et de vecteur directeur $\overrightarrow{v} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.

- **6.** Dans un système d'équations paramétriques $\begin{cases} x = \alpha t + x_A \\ y = \beta t + y_A \end{cases} \quad t \in \mathbb{R} :$ voici un vecteur normal : $\overrightarrow{n} = \dots$ et un vecteur directeur : $\overrightarrow{v} = \dots$
- 7. Donner un système d'équations paramétriques que la droite d'équation 2x 3y + 6 = 0.

Nom - Prénom :

TSI 1 lycée Monge 2024-2025

Interrogation N°15

1. Méthode pour obtenir une équation cartésienne de la droite \mathcal{D} passant par une point $A(x_A, y_A)$ et de vecteur normal $\overrightarrow{n} = \begin{pmatrix} a \\ b \end{pmatrix}$.

- **2.** Dans un système d'équations paramétriques $\begin{cases} x = \alpha t + x_A \\ y = \beta t + y_A \end{cases} \quad t \in \mathbb{R} :$ voici un vecteur directeur : $\overrightarrow{v} = \dots$ et un vecteur normal : $\overrightarrow{n} = \dots$
- **3.** Donner une équation cartésienne de la droite qui a pour système d'équations paramétriques : $\begin{cases} x=2t-4\\ y=-t+3 \end{cases} \text{ avec } t \in \mathbb{R}:$

4. Limites de arctan aux bords de l'ensemble de définition :

$$\arctan'(x) = \dots$$

- **5.** Définition de arcsin :
- **6.** $\arctan(\sqrt{3}) = \ldots \operatorname{car}$ $\arccos\left(\frac{\sqrt{3}}{2}\right) = \ldots \operatorname{car}$ $\arcsin\left(-\frac{1}{2}\right) = \ldots \operatorname{car}$
- 7. $cos(x) = a \Leftrightarrow \dots$