DÉBUT DE DEVOIR MAISON N°7 pour Mardi 4 novembre, 10h

La présentation et la rédaction devront être soignées. Les exercices ou questions avec ★ sont facultatifs.

Exercice 1.

On appelle E l'ensemble des élèves de la classe de TSI2.1, et n est l'application de E dans [0; 20] qui à un élève associe sa note au dernier DS de maths.

1. Donner l'écriture symbolique des propositions suivantes.

Par exemple, pour la phrase « Au moins un élève a 10 ou moins que 10. », cela peut donner $\exists e \in E, n(e) \leq 10$.

- (a) Au moins un élève a 10 ou plus de 10.
- (d) Nathan M. a eu la meilleure note.
- (b) Tous les élèves ont 10 ou plus.
- (e) Aucun élève n'a eu la même note que Ethan.

(c) Aucun élève n'a dépassé 10.

- (f) Un seul élève a eu 17.
- 2. Donner la négation de chacune des propositions précédentes, en français, et en écriture symbolique. (écriture symbolique facultative pour la négation de la (f)).
- 3. Parmi toutes les propositions précédentes, en trouver deux qui ont un lien d'implication.

Exercice 2.

Dans chacun des cas suivants, déterminer $\mathcal{P}(E)$ et $\mathcal{P}(\mathcal{P}(E))$.

(a)
$$E = \{a\}$$

★(b)
$$E = \{b, c\}.$$

Exercice 3. Pour chacune des deux fonctions, déterminer $f(\llbracket -2, 3 \rrbracket)$ et $f^{-1}(\llbracket 0, 4 \rrbracket)$. f est-elle injective ? surjective ? si elle est bijective, préciser sa réciproque.

(a)
$$f: \mathbb{Z} \to \mathbb{N}$$

 $n \mapsto n^2$

(b)
$$f: \mathbb{Z} \to \mathbb{Z}$$
 $n \mapsto -n+3$

(c)
$$f: \mathbb{Z} \to \mathbb{Z}$$

 $n \mapsto 3n+2$

Exercice 4.

Dans une base orthonormée directe, on note $\overrightarrow{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{v} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Vérifier que ces deux vecteurs sont orthogonaux.
- **2.** Déterminer un vecteur \overrightarrow{w} tel que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ soit une base orthogonale directe de l'espace.
- **3.** Comment transformer cette base pour obtenir une base orthonormale directe?

Exercice 5.

Exercice 6.

CALCULS

Traiter (au moins) un exercice au choix.

Exercice 7. Factorisation.

Factoriser sous la forme (ax + b)(cx + d) les expressions suivantes :

(a)
$$-(2x-1)(3x+4) + x(2x-1)$$

(e)
$$25 - (10x + 3)^2$$

(b)
$$(x+3)^2 + 2(x+3)(3x-1)$$

(f)
$$(2x+1)(-x+3) + x^2 + 2x + 1$$

(c)
$$(x-7)(3x-15) + 2(x-5)(3x-12)$$

(g)
$$3(6x-8)(4x-5)+3x-4$$

(d)
$$-(6x+7)(5x-1)+36x^2-49$$

(h)
$$(-9x-8)(8x+8)+64x^2-64$$

Exercice 8. Fractions.

Exprimer les termes suivants sous forme d'une seule fraction, simplifie au maximum.

(a)
$$\frac{2}{3} \times \frac{1}{4} - \frac{5}{6}$$

(d)
$$\frac{2}{21} - \frac{3}{7} + \frac{16}{9}$$

(g)
$$3+5\frac{\frac{7}{2}-2}{\frac{7}{4}-\frac{1}{2}}$$

(b)
$$\frac{\frac{1}{4}+5}{\frac{2}{3}}$$

(e)
$$\frac{2-3\times\frac{5}{7}}{\frac{20}{21}}$$

(h)
$$\frac{\left(-\frac{2}{3} - \frac{1}{6}\right)\left(2 + \frac{1}{5}\right)}{\frac{1}{4} - 3}$$

(c)
$$\frac{-\frac{3}{2}+\frac{9}{4}}{2}$$

(f)
$$27\left(1-\frac{1}{3}\right)\left(\frac{1}{4}+\frac{3}{2}\right)$$

Exercice 9. Racines carrées et développements.

Simplifier autant que possible les expressions suivantes.

(a)
$$(2\sqrt{5})^2$$

(b)
$$(2+\sqrt{5})^2$$

(c)
$$(\sqrt{2\sqrt{3}})^4$$

(d)
$$\left(\frac{5-\sqrt{2}}{\sqrt{3}}\right)^2$$

(e)
$$(3+\sqrt{7})^2-(3-\sqrt{7})^2$$

(f)
$$(3+\sqrt{7})^2+(3-\sqrt{7})^2$$

(g)
$$\sqrt{(1-\sqrt{2})^2} + \sqrt{(2-\sqrt{2})^2}$$

(h)
$$\sqrt{(1+\sqrt{7})^2+(1-\sqrt{7})^2}$$

★ (i)
$$\sqrt{(a+b)^2 - 4ab}$$