Corrigé du DM n°4

Correction 1. Réponses.

(a)
$$\overrightarrow{u}.\overrightarrow{v}=1$$

(c)
$$\overrightarrow{v} \wedge \overrightarrow{w} = \begin{pmatrix} 2 \\ -4 \\ -4 \end{pmatrix}$$

(e)
$$(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} = \begin{pmatrix} -15\\9\\-12 \end{pmatrix}$$

(b)
$$\overrightarrow{u} \wedge \overrightarrow{v} = \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$$

(d)
$$\overrightarrow{u}.(\overrightarrow{w} \wedge \overrightarrow{v}) = 6$$

 $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = -6$

(b)
$$\overrightarrow{u} \wedge \overrightarrow{v} = \begin{pmatrix} 3 \\ -3 \\ -6 \end{pmatrix}$$
 (c) $\overrightarrow{v} \wedge \overrightarrow{w} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$ (d) $\overrightarrow{u} \cdot (\overrightarrow{w} \wedge \overrightarrow{v}) = 6$ $\det(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) = -6$ (f) $(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge (\overrightarrow{u} \wedge \overrightarrow{w}) = \begin{pmatrix} -6 \\ -18 \\ 6 \end{pmatrix}$

Correction 2.

1.
$$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.(\overrightarrow{CB} + \overrightarrow{BD}) = \overrightarrow{AB}.\overrightarrow{CB} + \overrightarrow{AB}.\overrightarrow{BD} = \overrightarrow{BA}.\overrightarrow{BC} - \overrightarrow{BA}.\overrightarrow{BD}.$$

Or les côtés sont tous de même mesure donc les triangles ABC et ABD sont équilatéraux, donc $(\overrightarrow{BA}, \overrightarrow{BC})$ et $(\overrightarrow{BA}, \overrightarrow{BD})$ mesurent $\frac{\pi}{3}$.

Donc $\overrightarrow{AB} \cdot \overrightarrow{CD} = 1 \times 1 \times \cos(\frac{\pi}{3}) - 1 \times 1 \times \cos(\frac{\pi}{3}) = 0.$

Donc (AB) et (CD) sont orthogonales

2. (a)
$$G$$
 est isobarycentre de A , B , C et D signifie que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$.

Donc $\overrightarrow{GA} + \overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{0}$

Soit $4\overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = \overrightarrow{0}$

Donc $-4\overrightarrow{GA} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$.

Donc $\overrightarrow{AG} = \frac{1}{4} (\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$.

(b)
$$\overrightarrow{AG}^2 = \overrightarrow{AG}.\overrightarrow{AG}$$

 $= \frac{1}{16}(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}).(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})$
 $= \frac{1}{16}(\overrightarrow{AB}.\overrightarrow{AB} + \overrightarrow{AC}.\overrightarrow{AC} + \overrightarrow{AD}.\overrightarrow{AD} + 2\overrightarrow{AB}.\overrightarrow{AC} + 2\overrightarrow{AB}.\overrightarrow{AD} + 2\overrightarrow{AC}.\overrightarrow{AD})$

De même qu'en 1., les angles des faces font tous $\frac{\pi}{3}$ et les côtés sont de longueur 1 donc $\overrightarrow{AB} \wedge \overrightarrow{AB} = \overrightarrow{AC} \wedge \overrightarrow{AC} = \overrightarrow{AD} \wedge \overrightarrow{AD} = 1.$

Donc
$$\overrightarrow{AG}^2 = \frac{1}{16} \left(1 + 1 + 1 + 2 \times 1 \times 1 \times \cos(\frac{\pi}{3}) + 2 \times 1 \times 1 \times \cos(\frac{\pi}{3}) + 2 \times 1 \times 1 \times \cos(\frac{\pi}{3}) \right)$$

$$= \frac{1}{16} \left(3 + 2 \times \frac{1}{2} + 2 \times \frac{1}{2} + 2 \times \frac{1}{2} \right)$$

$$= \frac{1}{16} \times 6$$

$$= \frac{3}{8}$$

Donc
$$AG = \sqrt{\frac{3}{8}}$$
.

(c) Le même raisonnement est aussi vrai avec les points
$$B$$
, C et D , car comme le tétraèdre est régulier, tous les points jouent tous le même rôle, donc $BG = CG = DG = \sqrt{\frac{3}{8}}$.

Correction 3.

1. La base 1 est orthonormée donc
$$\overrightarrow{x_0} = (\overrightarrow{x_0}.\overrightarrow{x_1})\overrightarrow{x_1} + (\overrightarrow{x_0}.\overrightarrow{y_1})\overrightarrow{y_1} + (\overrightarrow{x_0}.\overrightarrow{z_1})\overrightarrow{z_1}$$

Or $\overrightarrow{x_0}.\overrightarrow{x_1} = 1 \times 1 \times \cos(\alpha) = \cos(\alpha)$
 $\overrightarrow{x_0}.\overrightarrow{y_1} = 1 \times 1 \times \cos(\frac{\pi}{2} + \alpha) = -\sin(\alpha)$
 $\overrightarrow{x_0}.\overrightarrow{z_1} = 0$ (orthogonaux).

Donc
$$\overrightarrow{x_0} = \cos(\alpha)\overrightarrow{x_1} - \sin(\alpha)\overrightarrow{y_1}$$

Donc
$$\overrightarrow{x_0} \wedge \overrightarrow{x_2} = \left(\cos(\alpha)\overrightarrow{x_1} - \sin(\alpha)\overrightarrow{y_1}\right) \wedge \overrightarrow{x_2}$$

 $= \cos(\alpha)\overrightarrow{x_1} \wedge \overrightarrow{x_2} - \sin(\alpha)\overrightarrow{y_1} \wedge \overrightarrow{x_2}$
 $\overrightarrow{x_1} \wedge \overrightarrow{x_2}$: la norme est $1 \times 1 \times \sin(\beta)$

 $\overrightarrow{\mathcal{Y}} \overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$ donc ne pas changer l'ordre en utilisant la linéarité.

 $\overrightarrow{x_1} \wedge \overrightarrow{x_2}$: la norme est $1 \times 1 \times \sin(\beta)$ la direction est $\pm \overrightarrow{y_1}$

le sens est $+\overrightarrow{y_1}$ $\overrightarrow{y_1} \wedge \overrightarrow{x_2}$: la norme est $1 \times 1 \times \sin(\frac{\pi}{2}) = 1$ la direction est $\pm \overrightarrow{z_2}$ le sens est $-\overrightarrow{z_2}$

Donc $|\overrightarrow{x_0} \wedge \overrightarrow{x_2} = \cos(\alpha) \sin(\beta) \overrightarrow{y_1} + \sin(\alpha) \overrightarrow{z_2}|$

2. On procède de même que pour la $\mathbf{1}$, $|\overrightarrow{x_2} = \cos(\beta)\overrightarrow{x_1} - \sin(\beta)\overrightarrow{z_1}|$

Donc
$$\overrightarrow{x_0} \wedge \overrightarrow{x_2} = \underline{\cos(\beta)} \overrightarrow{x_0} \wedge \overrightarrow{x_1} - \underline{\sin(\beta)} \overrightarrow{x_0} \wedge \overrightarrow{z_1}$$

= $\underline{\cos(\beta)} \underline{\sin(\alpha)} \overrightarrow{z_1} + \underline{\sin(\beta)} \overrightarrow{y_0}$

l'orientation de l'angle n'a pas d'importance dans le produit scalaire: $\cos(-\beta) = \cos(\beta)$

3. On va exprimer les deux résultats dans la base 1 pour pouvoir les comparer.

$$\overrightarrow{z_2} = \sin(\beta)\overrightarrow{x_1} + \cos(\beta)\overrightarrow{z_1}$$

Donc d'après le résultat obtenu à la question 1. :

$$\overrightarrow{x_0} \wedge \overrightarrow{x_2} = \cos(\alpha)\sin(\beta)\overrightarrow{y_1} + \sin(\alpha)\sin(\beta)\overrightarrow{x_1} + \sin(\alpha)\cos(\beta)\overrightarrow{z_1}$$
$$= \sin(\alpha)\sin(\beta)\overrightarrow{x_1} + \cos(\alpha)\sin(\beta)\overrightarrow{y_1} + \sin(\alpha)\cos(\beta)\overrightarrow{z_1}$$

De plus $\overrightarrow{y_0} = \sin(\alpha)\overrightarrow{x_1} + \cos(\alpha)\overrightarrow{y_1}$.

Donc d'après le résultat obtenu à la question 2. :

$$\overrightarrow{x_0} \wedge \overrightarrow{x_2} = \cos(\beta)\sin(\alpha)\overrightarrow{z_1} + \sin(\beta)\sin(\alpha)\overrightarrow{x_1} + \sin(\beta)\cos(\alpha)\overrightarrow{y_1}$$
$$= \sin(\alpha)\sin(\beta)\overrightarrow{x_1} + \cos(\alpha)\sin(\beta)\overrightarrow{y_1} + \sin(\alpha)\cos(\beta)\overrightarrow{z_1}$$

Donc les deux résultats sont bien les mêmes

Attention : les résultats des questions 1 et 2 ont l'air différents, mais ils ne sont pas exprimés à partir des mêmes vecteurs, donc on ne peut rien affirmer. Il faut les mettre sous la même forme (dans la même base) pour pouvoir les comparer