DEVOIR MAISON N°14 pour Lundi 6 janvier 2025, 8h

La présentation et la rédaction devront être soignées. Les exercices ou questions avec ★ sont facultatifs.

Exercice 1.

- 1. Soit $\mathcal{P}(n)$ la proposition $2^n = 3n + 1$. $\mathcal{P}(n)$ est-elle vraie pour tout entier naturel n? Justifier votre affirmation.
- **2.** On note $\mathcal{P}(n): 10n^2 3n + 2 \leq n^3$. Écrire $\mathcal{P}(0)$ et $\mathcal{P}(10)$, et déterminer si elles sont vraies ou fausses en le justifiant.
- **3.** On définit la suite (u_n) par $u_0 = 3$ et $\forall n \in \mathbb{N}, u_{n+1} = 3u_n + 2$. On note $\mathcal{P}(n): u_n = 4 \times 3^n - 1$. Écrire $\mathcal{P}(0)$ et $\mathcal{P}(2)$ et déterminer si elles sont vraies ou fausses en le justifiant.

Exercice 2.

- **1.** Montrer par récurrence que pour tout n de \mathbb{N}^* , $\sum_{k=1}^n \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$.
- **2.** Soit (v_n) la suite définie par $v_0 = \frac{1}{3}$ et $\forall n \in \mathbb{N}, v_{n+1} = (v_n)^2$. Démontrer par récurrence que pour tout entier naturel $n, v_n = \frac{1}{3^{2^n}}$.

Exercice 3.

- **1.** Calculer $(1 \sqrt{2})^6$.
- 2. Calculer les sommes suivantes :

$$S_1 = \sum_{k=8}^{31} \frac{k-5}{6}$$
 ; $S_2(n) = \sum_{k=0}^{n} (2^k + 4k + n - 3)$; $S_3(n) = \sum_{k=0}^{n} 2^k 3^{n-k}$.

- **3.** En faisant apparaître une somme télescopique (que l'on justifiera soigneusement), calculer $\sum_{k=1}^{18} \ln \left(\frac{k+1}{k} \right)$.
- \star 4. Soit N un entier naturel non nul.

Justifier que pour tout
$$p$$
 de $[0, N]$ et tout m de $[p, N]$, $\binom{m}{p} = \binom{m+1}{p+1} - \binom{m}{p+1}$.

En déduire une expression simple de $\sum_{m=p}^{N} {m \choose p}$ en fonction de N et p. (on considère que si x > y, $\binom{y}{x} = 0$)

Exercice 4.

Le but est de résoudre l'équation différentielle (E) $y'' - y = xe^x$ où l'inconnue est une fonction définie sur \mathbb{R} à valeurs réelles.

- 1. Montrer que la fonction $y_p(x) = \lambda(x)e^x$ est une solution particulière de (E) si et seulement si λ' est solution de l'équation (F): z' + 2z = x. Chercher une solution de cette équation (F) sous forme $x \mapsto ax + b$ (on cherche a et b) et en déduire une solution particulière de (E).
- **2.** Résoudre (E).

★ Exercice 5.

 ω étant un nombre réel, on recherche les fonctions f définies sur $[0, \pi]$, à valeurs réelles, solutions de l'équation $y'' + \omega y = 0$ et vérifiant de plus $f(0) = f(\pi) = 0$

- **1.** Trouver les fonctions f lorsque $\omega = 0$, puis lorsque $\omega < 0$.
- **2.** Lorsque $\omega > 0$, montrer que ce problème a une solution non nulle si et seulement si $\omega = n^2$ avec $n \in \mathbb{N}^*$.

★ Exercice 6.

L'application $g: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ est-elle injective ? surjective ? $z \mapsto e^z$

Exercice 7.

Un lutin est chargé d'emballer dans l'ordre 10 cadeaux, numérotés de 1 à 10, pour aider le père Noël. Il a à sa disposition, et à volonté, du papier cadeau rouge, du vert, du blanc et du jaune. Pour chaque cadeau, le lutin choisit au hasard entre ces couleurs.

- 1. Combien y a-t-il de résultats possibles pour l'emballage des dix cadeaux ?
- 2. Combien y a-t-il de résultats pour lesquels au moins un cadeau est rouge?
- **3.** Le lutin appelle trois amis pour faire une photo au pied du sapin qu'il pourra partager sur son réseau social favori : chacun porte une lettre pour former le mot Noël.
 - (a) Ils commencent par colorier les lettres : ils ont 9 couleurs de feutre et décident que pour la beauté de la photo, il ne peuvent pas colorier deux lettres de la même couleur.

 De combien de façons différentes peuvent-ils colorier les lettres ?
 - (b) Désormais, chaque lutin porte la lettre qu'il a coloriée. Mais ils ne sont pas très au point et ont du mal à se mettre dans le bon ordre. Ils décident de tester toutes les configurations possibles, et de prendre une photo à chaque fois (pour être sûrs que la photo qu'ils veulent sera bien prise). Combien de photos vont-ils prendre?

BONUS. Combien de vues fera la photo sur leur réseau social?

* Bonnes vacances! *