ESPACES VECTORIELS.

A - Introduction

- Exercice basique à savoir refaire
- ★ Exercice un peu plus difficile, non indispensable

★ Exercice 1.

Soient $(E, +_E, .)$ et $(F, +_E, .)$ deux K-espaces vectoriels.

On définit une addition sur $E \times F$ par $(u, v) + (u', v') = (u +_E u', v +_F v')$ (addition par composante), et la multiplication par un scalaire $\lambda(u, v) = (\lambda u, \lambda v)$ (multiplication de chaque composante). Vérifier que $E \times F$ muni de ces deux opérations est bien un \mathbb{K} -espace vectoriel.

Exercice 2.

Les ensembles ci-dessous sont-ils des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

$$A = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = nu_{n+1} + u_n\}$$

$$B = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_n \neq 1\}$$

Exercice 3.

Pour chacun des ensembles ci-dessous, déterminer s'il s'agit d'un sous-espace vectoriel de \mathbb{R}^3 ou pas.

$$A = \left\{ \overrightarrow{v} \in \mathbb{R}^3 \mid \overrightarrow{v} \text{ et } \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ orthogonaux } \right\}$$

$$B = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x^2 = y^2 \right\}$$

$$C = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 2y + z = 0 \right\}$$

Exercice 4.

Les ensembles ci-dessous sont-ils des sous-espaces vectoriels?

- **1.** $A = \{(x, y) \in \mathbb{R}^2 \mid x + y = 1\}$ sous-espace de \mathbb{R}^2 ?
- **2.** $B = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ s'annule au moins une fois} \}$ sous-espace de $\mathbb{R}^{\mathbb{R}}$?
- **3.** $C = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a+d=b+c \right\}$ sous-espace de $\mathcal{M}_{2,2}(\mathbb{R})$?
- **4.** D ensemble des fonctions f définies sur \mathbb{R} telles que f(0) = f(1), sous-espace de $\mathbb{R}^{\mathbb{R}}$?
- **5.** $E = \{z \in \mathbb{C} \mid |z| = 1\}$ sous-espace de \mathbb{C} ?
- **6.** $F = \{P \in \mathbb{K}[X] \mid P(0) = 0\}$ sous espace de $\mathbb{K}[X]$?

★ Exercice 5.

Soient F et G deux sous-espaces d'un $\mathbb{K}\text{-espace}$ vectoriel E.

Montrer que $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.