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Dénombrement.

Compter, dénombrer, est un processus naturel et concret . . . on peut compter le nombre d’objets dans un
sac, mais aussi le nombre de façons de choisir 3 représentants dans une assemblée, ou le nombre de dispositions
de personnes autour d’une table, le nombre de rangements possibles de livres sur des étagères . . .
La résolution de ce type de problèmes constitue une branche des mathématiques appelée combinatoire. Elle
s’est beaucoup développée à partir du 17ème siècle, en lien notamment avec des jeux de hasard et des probabilités
(Pascal, Fermat).

Lorsqu’il s’agit de dénombrer des ensembles infinis comme N, Z, R . . . les théories (initiées par Cantor) sont
beaucoup plus complexes et donnent lieu à des résultats parfois perturbants . . . Nous nous contenterons dans ce
chapitre de dénombrer des ensembles finis !

I. Cardinal

Définition.
Un ensemble E est fini s’il est vide ou s’il existe un entier naturel n non nul et une bijection de E

dans [[1, n]]. L’entier n est alors appelé le cardinal de E, noté Card(E) ou |E| ou #E.
Par convention, le cardinal de l’ensemble vide est 0.

Remarque : le cardinal d’un ensemble fini est le nombre d’éléments de cet ensemble.

Exemples : L’ensemble A = {a; −3; π} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les ensembles N, R, Z, C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[[5; 11]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On peut généraliser : Card([[p, n]]) = n − p + 1 , en particulier Card([[0, n]]) = n + 1 et Card([[1, n]]) = n .

Propriété.
E et F sont deux ensembles, E est fini.
Si il existe une application bijective de E dans F , alors F est fini de même cardinal que E.

Démonstration : voir exercice 1..

1) Cardinaux et opérations

Propriété.
Si A est une partie d’un ensemble fini E, alors A est un ensemble fini et Card(A) 6Card(E).
De plus, A = E si et seulement si Card(A) =Card(E).

Méthode : pour montrer que deux ensembles finis sont égaux, on peut donc montrer que l’un est inclus
dans l’autre et qu’ils ont même cardinal.

Propriété.
Soient A et B deux parties d’un ensemble fini E.
Alors : • Card(A) =Card(E)−Card(A) ;

• Card(B\A) =Card(B)−Card(A ∩ B) ;
• Card(A ∪ B) =Card(A)+Card(B)−Card(A ∩ B) ;

si A et B sont disjoints (c’est-à-dire A ∩ B = ∅) alors Card(A ∪ B) =Card(A)+Card(B).

Illustration :
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Conséquence : si A1, A2, . . . An sont des parties d’un ensemble fini E deux à deux disjointes,

alors Card

(

n
⋃

k=1

Ak

)

=Card(A1)+Card(A2) + . . . +Card(An).

2) Cardinaux et applications

Propriété.
E et F sont deux ensembles finis, et f est une application de E dans F .
• Si f est injective, alors Card(E) . . .Card(F ).
• Si f est surjective, alors Card(E) . . .Card(F ).
• Si f est bijective, alors . . .
• Si E et F ont même cardinal, alors f injective ⇐⇒ f bijective ⇐⇒ f surjective.

Illustration: (voir l’exercice 2. pour la preuve du dernier point)

II. Dénombrement

1) Tirages successifs dans des ensembles différents : produit cartésien

Rappel : E × F = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . et E2 = . . . . . . E4 = . . . . . . . . .

Situation caractéristique :
⋆ E et F sont deux sacs qui contiennent des jetons numérotés, on pioche un élément dans le sac E, puis

un dans le sac F et on note dans l’ordre les numéros obtenus : on forme un couple (x, y) qui est dans
l’ensemble E × F .

Théorème.
• Soient E et F deux ensembles finis, alors Card(E × F ) =Card(E)×Card(F ).
• Soient E1, E2, . . . En des ensembles finis, alors :

Card(E1 × E2 × . . . × En) =Card(E1)×Card(E2) × . . . ×Card(En).

Justification pour E × F avec E = {e1, e2, . . . , en} et F = {f1, f2, . . . , fp}.

Exemple : À la cantine, les élèves ont droit à un menu constitué d’une entrée, un plat et un dessert. Il y a
3 entrées possibles, 2 plats et 4 desserts, combien de menus différents peut-on constituer ?
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2) Tirages successifs dans un même ensemble : les p-uplets

a. Cas général avec remise possible

On rappelle que, si E est un ensemble fini, un p-uplet (ou p-liste) d’éléments de E est un élément de Ep,
c’est-à-dire une succession ordonnée de p éléments de E.
On le note généralement (x1, x2, . . . , xp) où chaque xi est un élément de E.

Situations caractéristiques :
⋆ On imagine que l’ensemble E est un sac et que ses éléments sont des jetons (tous numérotés) dans le

sac : former un p-uplet revient à piocher p fois dans l’ensemble E, en notant dans l’ordre les numéros et
en remettant à chaque fois dans le sac, le jeton pioché.

N Chaque application f de [[1, p]] dans E correspond à un p-uplet d’éléments de E :
si l’on note pour chaque k de [[1, p]], xk = f(k), alors le p-uplet correspondant à f est (x1, x2, . . . , xp).
(Plus généralement, l’ensemble de départ peut être n’importe quel ensemble de cardinal p.)

Théorème.
Si E est de cardinal n, le nombre de p-uplets d’éléments de E est np.
Si E est de cardinal n, il y a np applications de [[1, p]] dans E.

En effet,

Exemple : on lance 10 fois un dé, combien de résultats différents peut-on obtenir ?

Exemples usuels d’utilisation des p-uplets en dénombrement : lancers de pièce successifs, lancers de dé
successifs, tirages successifs avec remise d’une carte dans un jeu de carte, d’un jeton dans une urne . . .

b. Rangement de tous les éléments : les permutations

Définition.
E est un ensemble fini de cardinal n (non nul).
Une permutation de E est une n-liste d’éléments distincts de E.

Exemples : voici quelques permutations de l’ensemble E = {a, b, c, d} :

Situations caractéristiques :
⋆ Si E est un sac, former une permutation revient à piocher tous les éléments du sac un par un jusqu’à

vider le sac, autrement dit il s’agit simplement d’ordonner (ranger) tous les éléments du sac. Pour former
une permutation différente, on peut « permuter » deux (ou plus) éléments.

N Former une permutation de E revient à construire une application de
[[1, n]] dans E, injective . . . donc bijective.
L’application peut aussi avoir pour ensemble de définition, tout en-
semble de cardinal n, en particulier E. Une permutation de E peut
donc aussi désigner une bijection de E dans E.

[[1, n]] → E

k 7→ l’élément de E pioché
au k-ième tirage
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Notation : on appelle « n factorielle » et on note n! le nombre n(n − 1)(n − 2) × . . . × 2 × 1 .

Par convention 0! = 1. Et 1! = . . . 8! =. . .

Théorème.
Si E est de cardinal n, le nombre de permutations de E est n!.
n! est aussi le nombre d’applications bijectives de [[1, n]] dans E.

c. Rangements de quelques éléments : tirages successifs sans remise

On forme maintenant des p-uplets d’éléments de E distincts deux à deux.
⋆ si E est un sac, former un tel p-uplet revient à piocher p fois dans le sac mais en éliminant au fur et à

mesure chaque jeton pioché (pas de remise dans le sac du jeton).
N l’application de [[1, p]] dans E associée à un p-uplet d’éléments distincts sera . . . . . . . . . . . . . . . . . . . . . . . ,

en effet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Théorème.
E est un ensemble de cardinal n (non nul), et p est un nombre de [[1; n]].

Le nombre de p-listes d’éléments distincts de E est n(n − 1)(n − 2) . . . (n − p + 1) soit
n!

(n − p)!
.

Il y a
n!

(n − p)!
applications injectives de [[1, p]] dans E.

Justification.

Exemple : lors d’une course, 8 chevaux prennent le départ. On décide de jouer au tiercé, c’est-à-dire parier
sur les 3 chevaux qui vont arriver en tête, et dans quel ordre. Combien y a-t-il de paris possibles ?
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Exemples usuels d’utilisation des p-listes d’éléments distincts : tirages successifs sans remise d’une carte
dans un jeu de carte, d’un jeton dans une urne . . .

3) Tirages simultanés : les parties

(On rappelle que) si E est un ensemble, une partie de E est un sous-ensemble de E.

Situation caractéristique :
⋆ Si E est un sac, former une partie de E à p éléments revient à piocher d’un seul coup p jetons dans le
sac, autrement dit à choisir p jetons parmi les n du sac.
Une partie de E contenant p éléments est parfois aussi appelée une combinaison de p éléments de E.
Une combinaison est un ensemble, elle peut donc se noter {x1, x2, . . . , xp} où les xi sont des éléments
distincts.

Remarques :
− l’ordre des éléments d’une combinaison n’a pas d’importance (contrairement aux listes) : si E = {1, 2, 3, 4, 5},

alors {1, 3, 4} est une combinaison de 3 éléments de E et {. . . . . .} représente la même partie.
− {1; 1; 4} = {1; 4} donc c’est une combinaison de 2 éléments.

Exemple : Si E = {a, b, c, d}, voici la liste des parties de E :

• partie à 0 éléments : . . .

• parties à 1 élément : . . .

• parties à 2 éléments : . . .

• parties à 3 éléments : . . .

• partie à 4 éléments : . . .

Théorème.
Le nombre total de parties d’un ensemble E de cardinal n est . . . .

Justification.

Définition.

Le nombre de parties à p éléments de l’ensemble E qui contient n éléments se note

(

n

p

)

.

Ce nombre se lit « p parmi n ».

Les nombres

(

n

p

)

s’appellent des coefficients binomiaux.

D’après l’exemple ci-dessus :

(

4

0

)

= . . . . . . ,

(

4

1

)

= . . . . . . ,

(

4

2

)

= . . . . . . ,

(

4

3

)

= . . . . . . ,

(

4

4

)

= . . . . . . .
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Théorème.
Soit E un ensemble de cardinal n (non nul), et p un entier entre 1 et n (p ∈ [[1; n]]).

Le nombre

(

n

p

)

de parties de p éléments de E est

(

n

p

)

=
n!

(n − p)!p!

autrement dit

(

n

p

)

=
n × (n − 1) × (n − 2) × . . . × (n − p + 1)

p × (p − 1) × (p − 2) × . . . × 1
.

Exemples :

(

11

3

)

= . . . . . . . . . . . . . . . . .

(

75

2

)

=

En particulier :

(

n

1

)

= . . . en effet . . .

(

n

0

)

=

(

n

n

)

= . . .

(

n

p

)

=

(

n

n − p

)

Démonstration du théorème :

Exemple : une grille de loto contient 49 cases. Pour jouer, on doit cocher 6 numéros de la grille. De combien
de façons différentes peut-on remplir une grille ?

Exemples usuels d’utilisation des parties en dénombrement : tirages simultanés dans une urne, dans un
jeu de cartes, jeux de paris où l’ordre ne compte pas (loto) . . .
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Théorème.

Pour tout entier n plus grand que 1 et tout k de [[1; n]], on a

(

n + 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

.

Illustration : un professeur offre à sa classe un paquet de papillotes contenant 25 papillotes au chocolat au
lait et 25 au chocolat noir. Malheureusement, 30 élèves préfèrent les papillotes au chocolat au lait. Combien
y a-t-il de façons différentes de répartir les 25 papillotes au chocolat au lait parmi les 30 élèves qui en veulent
une ?
On va compter de deux manières différentes.

Conséquence : pour calculer ces coefficients,
on peut donc utiliser le triangle de Pascal

ci-contre : les nombres d’une ligne sont calculés
à partir de la ligne précédente.

❍
❍

❍
❍
❍❍

n

k
0 1 2 3 4 5 . . . . . .

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

...

n
( n

k−1

) (n
k

)

n + 1
(n+1

k

)

...
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E est de cardinal n

F est de cardinal n′ couples de E × F
p-uplets ou p-listes d’éléments de E

parties de E à p éléments

distincts (avec p 6 n)

résultats de . . .
un tirage dans E puis un
tirage dans F

. . .

. . . . . .

assimilable à une application . . .
de . . . . . . . . . dans . . .

. . .

exemples (et notations) avec
p = 3 et E = {a, b, c, d} et
F = {e, f, g}

. . . (a, b, a) (d, c, a) (b, a, a) . . . . . .

combien y en a-t-il ? . . . . . . . . . . . .

cas particulier

Si E = F , . . . Si n = p, . . .
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